

St. Pious X Degree & PG College for Women Autonomous College, Affiliated to oU Re-Accredited with A+ Grade by NAAC Snehapuri Colony, Nacharam, Hyderabad

DEPARTMENT OF PHYSICS

COURSE OUTCOMES

SEMESTER I

	Title of the Course: MECHANICS & OSCILLATIONS					
Sem-I	Credits: 4	Course Code:PHY102	Year/Group: IMPCS	HPW: 4		
	Course Outcomes					
CO1	State ba Physics.	asic Theorems of Vect	or Analysis applica	ble to	R	
CO2	study the	the Collisions in Two e relation between sc arameter			Az	
CO3		and the principles of (f Relativity.	Central Forces and	Special	Ŭ	
CO4	_	e different types of C Using Fourier Theore	•	ex Wave	Az	

Practicals:

		Name of the Course: MECH/	ANICS & OSCILLATIONS	;	
SemI	Credits: 1	Course Code: PHY102P	Year/Group: IMPCs.	HPW: 03	
Course	Outcomes				
CO1	Demonstrate different typed of Pendulums				
CO2	Interpr	et Basic Laws of Physics			

SEMESTER II

	Title of the Course: THERMAL PHYSICS					
Sem-II	Credits: 4	Course Code:PHY202	Year/Group: IMPCS	HPW: 4		
		Course Outcom	es		Blooms Level	
CO1	Understa	nd the Laws of Thermodyna	amics.		U	
CO2	Obtain Kr	nowledge about Maxwell's	Equations.		Ap	
CO3	Learn ab	out Quantum theory of Ra	diation.		С	
CO4	Gain knov	wledge about Statistical M	echanics.		R	

Practical:

		Name of the Course: T	HERMAL PHYSICS	
Sem VI	Credits:	Course Code: PHY202P	Year/Group: IMPCs. HPW: 02	
Cours	e Outcom	es		
CO1	Examine the the difference between Heat and Temperature			
CO2	Classify t	hermal Expansion of differ	ent materials	

SEMESTER III

Remember, Understand, Apply, Analyze, Evaluate, Create: R, U, Ap, Az, E, C

	Title of the Course: ELECTROMAGNETIC THEORY					
Sem- III	Credits: 4	Course Code:PHY302	Year/Group: II MPCS HPV	W: 4		
	Course Outcomes					
CO1	CO1 Understand the concepts of Electro statistics					
CO2	To becor	С				
CO3	Infer the	concepts of electromagn	etic Induction	Ap		
CO4	, ,	phase relation between cu binations and implication	<i>.</i>	and Az		

Practical:

	Name of the Course: ELECTROMAGNETIC THEORY					
SemIII	Credits: 1	Course Code: PHY302P	Year/Group: II MPCs.	HPW: 02		
Course	Outcomes					
CO1	Development of Network theorems					
CO2	Provide i	nsight of Electronics circu	its			

SEMESTER IV

Remember, Understand, Apply, Analyze, Evaluate, Create: R, U, Ap, Az, E, C

Title of the Course: WAVES & OPTICS					
Sem- IV	Credits: 4	Course Code:PHY402	Year/Group: II MPCS	HPW: 4	
	Course Outcomes				
CO1	Realize the concepts of Waves in strings and bars				R
CO2	CO2 Comprehend the concepts in Interference				U
CO3	CO3 Understand the basics of Diffraction				U
CO4	Analyse a	nd apply the concept of Pol	arization		Az

Practical:

		Name of the Course:	WAVES & OPTICS		
SemIV	Credits: 1	Course Code: PHY402P	Year/Group: II MPCs.	HPW: 02	
Course	Outcomes				
CO1	Provide insights into concepts of wave along strings and Bars.				
CO2	Develop hands on experience in experiments based on Interference, Diffraction and Polarization				

Theory

SEMESTER V

Remember, Understand, Apply, Analyze, Evaluate, Create: R, U, Ap, Az, E, C

	Title of the Course: MODERN PHYSICS				
Sem- V	Credits:	Course Code:PHY502A	Year/Group: III MPCS I	IPW: 4	
	Course Outcomes			Blooms Level	
CO1	CO1 Understand the concepts of Atomic & Molecular Spectroscopy			U	
CO2	CO2 To Analyse Quantum mechanical problems			Az	
CO3	CO3 Remember Particle Interactions and Decays			R	
CO4	CO4 Apply Bravais Lattices and studt Cristal Structures			Ap	

Practical:

SEMESTER V

	Title of the Course: MODERN PHYSICS					
Sem- V	Credits: 2	Course Code:PHY102	Year/Group: IMPCS	HPW: 2		
	Course Outcomes					
CO1	CO1 Evaluate Planks Constant.			E		
CO2	Apply Phot	o Electric Equation		Ap		

Theory

SEMESTER VI

Remember, Understand, Apply, Analyze, Evaluate, Create: R, U, Ap, Az, E, C

	Title of the Course: ELECTRONICS				
Sem- VI	Credits:	Course Code:PHY602A	Year/Group: III MPCS HI	PW: 4	
	Course Outcomes			Blooms Level	
CO1	CO1 Understand the Band Theory of Solids			U	
CO2	CO2 Analyse Electronic Devices and Circuits			Az	
CO3	CO3 Evaluate Various Special Devices			E	
CO4		problem solving and critical Digital Electronics.	al thinking skills in Number	C	

Practical:

SEMESTER VI

	Title of the Course: ELECTRONICS				
Sem- V	Credits:	Course Code:PHY102	Year/Group: IMPCS	HPW	7: 2
Course Outcomes				Blooms Level	
CO1	CO1 Understand			<u>U</u>	
CO2	CO2 Evaluate and Verify De Morgan's Theorems			E	

SEMESTER VI

Title of the Course: ELECTRONICS				
Sem- VI	Credits: 5	Course Code:PHY	Year/Group: IMPCS HPW	7 : 4
Course Outcomes				Blooms Level
CO1	Learn fundamental knowledge of the Nanoscience and related fields			<u>U</u>
CO2	Acquire an understanding the Nanoscience and Applications			E
CO3	Understand the broad outline of Nanoscience and Nanotechnology.			E
CO4	Understand the synthesis of nanomaterials and their application and their impact on the Environment			E